Purpose

- **Safe work environment** for students, academic staff, and professional staff of all levels at the Research School of Chemistry

- Induction: Part of a large package of measures to prevent accidents, illnesses and injuries

- Keep the RSC a **safe working environment** for ourselves, our students, and our colleagues
  - Training
  - Supervision
  - Awareness
http://chemistry.anu.edu.au/whs-safety-noticeboard
ANU alumna awarded a Rhodes Scholarship

ANU graduate Ellen Cliff has been named the Queensland Rhodes Scholar for 2017 and will head to Oxford in September next year.

» read more

News

06 Dec 2016
Michelle Coote, First Australian Editor of JACS

21 Nov 2016
HG Smith Medal

27 Oct 2018
ANU alumna awarded a Rhodes Scholarship

Events

No events are currently scheduled.

» past events
Commitment

After-Hours Login

Safety Alerts

Resources (ANU & RSC)

Resources (External)

RSC Emergency Response

RSC Advisory Committee on Safety

Chemwatch and Chemical Inventory
Regulations and Policies

RESOURCES (ANU & RSC)

- Our duties at ANU & (Directors, Managers, Students, Staff, Contractors, Visitors)
- ANU Policies, procedures, and guidelines
- **ANU Work Health and Safety (WHS) & webpage**
- RSC safety regulations (pdf, 1.7 MB)
Information about promoting and ensuring health and safety in the university workplace.

Incident/injury notifications can be reported on the University's internal online incident notification system in HORUS. Notifications can also be reported directly to Work Environment Group on 02 6125 2193, via email at weg@anu.edu.au, or after hours to ANU security.

Work health & safety (WHS)
- Chemical Awareness and Safety Data Sheets (SDS)
- Implementation and operation
  - Management commitment
- Measurement and evaluation
- Rehabilitation management system audit
- WHS communications
- WHS planning
- Workers' Compensation Self-Insurance Consultation

Injury prevention & management
- Injury management
- Injury prevention advice
- Occupational Strains Liaison Officer Network

Related links
- Australian Standards via SAI Global
- Comcare
- Comlaw
- Incident notification using HORUS
- WHS definitions and acronyms
- WHS Training & Induction
Regulations and Policies

Health & safety

Information about promoting and ensuring health and safety in the university workplace.

Incident/injury notifications can be reported on the University's internal online incident notification system in HORUS. Notifications can also be reported directly to Work Environment Group on 02 6125 2193, via email at weg@anu.edu.au, or after hours to ANU security.

Work health & safety (WHS)

- Chemical Awareness and Safety Data Sheets (SDS)
- Implementation and operation
- Management commitment
- Measurement and evaluation
- Rehabilitation management system audit
- WHS communications
- WHS planning
- Workers' Compensation Self-Insurance Consultation

Injury prevention & management

- Injury management
- Injury prevention advice
- Occupational Strains Liaison Officer Network

Related links

- Australian Standards via SAI Global
- Comcare
- Comlaw
- Incident notification using HORUS
- WHS definitions and acronyms
- WHS Training & Induction
Management commitment

The success of the University’s Health and Safety Management Arrangements (HSMA) depends on commitment from all levels and functions within ANU, especially from senior management. Senior management must enable the effective implementation of the HSMA throughout the whole of ANU.

Work Health & Safety (WHS) policies, procedures & guidelines

ANU has developed WHS policies, Safe Work procedures and WHS guidelines to:

- help keep all staff, students, contractors and visitors safe and
- meet all legislative requirements.

WHS policies

The WHS policies include ANU WHS management principles. These, together with the Safe Work procedures and guidelines provide direction for the range of hazardous activities undertaken within the University.

- Work Health & Safety Policy
- Chemical Management Policy
- Plant (Equipment) Management Policy
- Radiation Safety Policy

Health and Safety Management Arrangements (HSMA)

To align with the Work Health and Safety Act 2011, ANU has revised its Health and Safety Management Arrangements (HSMA). Work Environment Group has used five main principles in designing, developing and implementing the HSMA.

We have incorporated these five principles into our HSMA Model as part of our overall WHS risk management program.

MANAGEMENT COMMITMENT

- Effective governance
- ANU work health & safety duties
- Defining reasonably practicable
- Duties: contractors
- Duties: First Aid Attendants
- Duties: Health & Safety & Deputy Health & Safety representatives

- Duties: managers & supervisors
- Duties: safety officers
- Duties: staff
- Duties: Staff who engage or manage contractors
- Duties: students & visitors
- Duties: University Council & Executive, College Deans & Directors & Directors of Service Divisions

Policies

- Occupational health and safety policy
- Chemical management policy
- Plant (equipment) management policy
- Radiation safety policy
Regulations and Policies

Management commitment

The success of the University’s Health and Safety Management Arrangements (HSMA) depends on commitment from all levels and functions within ANU, especially from senior management. Senior management must enable the effective implementation of the HSMA throughout the whole of ANU.

Work Health & Safety (WHS) policies, procedures & guidelines

ANU has developed WHS policies, Safe Work procedures and WHS guidelines to:

- help keep all staff, students, contractors and visitors safe and
- meet all legislative requirements.

WHS policies

The WHS policies include ANU WHS management principles. These, together with the Safe Work procedures and guidelines provide direction for the range of hazardous activities undertaken within the University.

- Work Health & Safety Policy
- Chemical Management Policy
- Plant (Equipment) Management Policy
- Radiation Safety Policy

Health and Safety Management Arrangements (HSMA)

To align with the Work Health and Safety Act 2011, ANU has revised its Health and Safety Management Arrangements (HSMA). Work Environment Group has used five main principles in designing, developing and implementing the HSMA.

We have incorporated these five principles into our HSMA Model as part of our overall WHS risk
Policy: Health, safety and wellbeing

Purpose
This policy is intended to provide a safe workplace as well as deliver the best health, safety and wellbeing outcomes for everyone that the Australian National University is responsible for.

Overview
The University is committed to the health, safety and wellbeing of its workers, students and visitors. This policy defines the principles of this commitment and University’s approach to the continuous improvement of health and safety in the workplace.

Scope
This policy applies to all workers, students and visitors across the University.
Policy: Health, safety and wellbeing

Purpose
This policy is intended to provide a safe workplace as well as deliver the best health, safety and wellbeing outcomes for everyone that the Australian National University is responsible for.

Overview
The University is committed to the health, safety and wellbeing of its workers, students and visitors. This policy defines the principles of this commitment and University’s approach to the continuous improvement of health and safety in the workplace.

Scope
This policy applies to all workers, students and visitors across the University.
Regulations and Policies

Policy: Health, safety and wellbeing

Responsibility and authority

3. Responsibility and authority under this policy operates at three levels:

- **Executive**: provides leadership to ensure communication of this policy and effective implementation
- **Senior Managers**: support managers and supervisors in fulfilling their responsibilities and accountabilities
- **Workers** (staff, volunteers and contractors), **students and visitors**: take reasonable care for their own safety and the safety of others as well as comply with any reasonable instruction, policy or procedure of the University in relation to health and safety
Regulations and Policies

Australian Law (Commonwealth Law)

- Acts
  - Work Health and Safety Act 2011
- Codes (incl. Codes of Practice)
  - Confined Spaces, Labelling of Workplace Hazardous Chemicals, Managing Risks of Hazardous Chemicals in the Workplace
- Other ComLaw categories, e.g. Bills, Approvals, Rules, Plans, Orders, ...

Regulator (Comcare)

ANU WHS

RSC WHS

ANU Regulations (OHS; lately renamed WHS)

RSC

RSBS

JCSMR

Other Departments

Safety Regs
Regulations and Policies

**Australian Law** (Commonwealth Law)

- Acts
  - Work Health and Safety Act 2011
- Codes (incl. Codes of Practice)
  - Confined Spaces, Labelling of Workplace Hazardous Chemicals, Managing Risks of Hazardous Chemicals in the Workplace
- Other ComLaw categories, e.g. Bills, Approvals, Rules, Plans, Orders, ...

**RESOURCES (EXTERNAL)**

- Training/Information Document on GHS (pdf, 10.9 MB; Safe Work Australia)
- The overarching pieces of Commonwealth WHS legislation are the WHS Act 2011 and the WHS Regulations 2011.
- Codes of Practice
- Australian Standards (via ANU library; choose "Australian Standards"; ISIS/HORUS password required from outside ANU)
That’s a lot to read through...
That’s a lot to read through...

.... but luckily we’ve got a comprehensive summary:
RSC Safety Regulations

The RSC Safety Regulations
That’s a lot to read through...

The RSC Safety Regulations

RESOURCES (ANU & RSC)

- Our duties at ANU
- ANU Policies, procedures, and guidelines
- ANU Work Health and Safety (WHS) web page
- RSC safety regulations (pdf, 1.7 MB)
RSC Safety Regulations

1. Emergency Procedures
2. First Aid
3. Accident Reporting
4. Smoking, Eating Drinking
5. Personal Protection Equipment
6. Risk Assessments and Building Access
7. High Hazard Laboratories
8. Solvents
9. Disposal of Laboratory Waste
10. Radiation
11. Micro-organisms and other Biological Materials
12. Hazardous Chemicals
13. Occupational Strain Liaison Officers
14. Additional Rules and Information
15. Regulations for RSC Workshop Staff
16. Regulations for RSC Stores Staff
17. Monthly Safety Inspections
18. Annual Clean-Up and Stock-Take
19. Bibliography
Building Access

- **Authorised access only**
  - Swipe card (induction)
  - Visitor (sign-in, accompanied, business hours)

- **The times you can be in the building are**
  - Normal business hours (Mo-Fr 8:00-18:00)
    - Undergraduate students, visitors, staff
  - Normal access hours (Mo-Fr 7:30-21:00, Sat/Sun/PH 8:00-18:00)
    - Hrs, PhD, Postdocs, visitors with permission
  - Unrestricted access (24/7)
    - Emergency response team, academics, case-by-case permissions
Maintaining Safe Working Conditions

- Tools for achieving and maintaining safe working conditions
Maintaining Safe Working Conditions

- **Tools for achieving and maintaining safe working conditions**
  - Risk Assessments for all potentially hazardous research/work
  - WHS Committees
  - Policies for WHS Management
  - Communication
    - e.g. incident notification
  - Audit/inspection system
  - Information/training/education
    - e.g. inductions, safety courses, in-lab training
  - Safe work procedures
RSC EMERGENCY RESPONSE

- RSC first aid officers and facilities (list, pdf, 384 KB)
- RSC First Aid Facilities (map, pdf, 1.2 MB)
- RSC Emergency Control Organisation (ECO) (pdf, 991 KB; Nov. 2016)
- Emergency exits and external isolation points (pdf, 254 KB)
- Automatic External Defibrillators on the ANU Campus (map, padf, 1.8 MB)
- ANU Emergency Flip Chart (pdf, 1.7 MB; Nov. 2016)
Emergency Procedures

In case of a fire alarm

Evacuate

The system will tell you if you’re not to evacuate (e.g. chemical spills). There won’t be a doubt as to what you’re supposed to do.
Emergency Procedures

- Safety Features
  - Red Panic Buttons
Emergency Procedures

- **Safety Features**
  - Red Panic Buttons
  - Fire alarm system
  - PA
  - Sprinklers
  - Smoke detectors
Emergency Procedures

- **Safety Features**
  - Red Panic Buttons
  - Fire alarm system
    - PA
  - Sprinklers
  - Smoke detectors
  - Power Shut-off Buttons
Emergency Procedures

- **Safety Features**
  - Red Panic Buttons
  - Fire alarm system
    - PA
    - Sprinklers
    - Smoke detectors
  - Power Shut-off Buttons
  - Break Glass Panels
Emergency Procedures

- **Safety Features**
  - Red Panic Buttons
  - Fire alarm system
    - PA
    - Sprinklers
    - Smoke detectors
  - Power Shut-off Buttons
  - Break Glass Panels
  - Safety Showers and Eyewash
Emergency Procedures

- **Safety Features**
  - Red Panic Buttons
  - Fire alarm system
    - PA
    - Sprinklers
    - Smoke detectors
  - Power Shut-off Buttons
  - Break Glass Panels
  - Safety Showers and Eyewash
  - First Aid Rooms and Cabinets
Emergency Procedures

- **Safety Features**
  - Red Panic Buttons
  - Fire alarm system
    - PA
    - Sprinklers
    - Smoke detectors
  - Power Shut-off Buttons
  - Break Glass Panels
  - Safety Showers and Eyewash
  - First Aid Rooms and Cabinets
  - Oxygen Sensors
Emergency Procedures

- Safety Features
  - Red Panic Buttons
  - Fire alarm system
    - PA
    - Sprinklers
    - Smoke detectors
  - Power Shut-off Buttons
  - Break Glass Panels
  - Safety Showers and Eyewash
  - First Aid Rooms and Cabinets
  - Oxygen Sensors
  - Gas Shut-off Buttons (biological labs only)
Emergency Procedures

- **Safety Features**
  - Red Panic Buttons
  - Fire alarm system
    - PA
    - Sprinklers
    - Smoke detectors
  - Power Shut-off Buttons
  - Break Glass Panels
  - Safety Showers and Eyewash
  - First Aid Rooms and Cabinets
  - Oxygen Sensors
  - Gas Shut-off Buttons (biological labs only)
  - **Fire Extinguishers, - Buckets, - Blankets**
Emergency Procedures

- **Safety Features**
  - Red Panic Buttons
  - Fire alarm system
    - PA
    - Sprinklers
    - Smoke detectors
  - Power Shut-off Buttons
  - Break Glass Panels
  - Safety Showers and Eyewash
  - First Aid Rooms and Cabinets
  - Oxygen Sensors
  - Gas Shut-off Buttons (biological labs only)
  - **Fire Extinguishers, - Buckets, - Blankets**
Emergency Procedures

Safety Features
- Red Panic Buttons
- Fire alarm system
  - PA
  - Sprinklers
  - Smoke detectors
- Power Shut-off Buttons
- Break Glass Panels
- Safety Showers and Eyewash
- First Aid Rooms and Cabinets
- Oxygen Sensors
- Gas Shut-off Buttons (biological labs only)
- Fire Extinguishers, - Buckets, - Blankets
- Dry/wet Corridors (separate air handling systems)
Emergency Procedures

Help where you can
as long as it’s safe for yourself

Remember:
Assess quickly
Get help (shouting, sending someone, phone)
Inform internal emergency response team
Keep affected areas clear of people
Inform emergency team of hazards in the affected area
Emergency Procedures

- Look for warden lists and/or “yellow cards”
- Save these numbers

- 000 (Fire Brigade, Ambulance, Police, Hazmat)
- 6125 2249 (ANU Security, central)
- 04 16 249 987 (Geoff Deeble, School Manager)
- 04 04 823 162 (Julius Rucska, Facilities Manager)
- 04 10 424 483 (Vance Lawrence, teaching, first aid)
- 04 04 823 154 (Torsten Schwich, organomet., RSC WHS)
All incidents (including near-misses) need to be reported “as soon as you become aware” (remember 4-hour rule)

- **Supervisor/senior group member (postdoc/PhD)**
  - Mal McLeod (RSC Safety Committee Chair)
  - Geoff Deeble (School Manager)
  - Julius Rucska (Facilities Manager)
  - Vance Lawrence (Senior Technical Officer, RSC Teaching Div.)
  - Nick Kanizaj (Senior Technical Officer, RSC)
  - Torsten Schwich (RSC WHS Manager)
Incident Reporting

HORUS and ISIS

We haven’t tested this site in your browser version yet, so it may not work as expected. For best results, you can use one of the following browsers:

- Safari (Version 3.2 and above)
- Mozilla Firefox (Version 3.5 and above)

University ID: 
Password: 

Log In
Incident Reporting
Incident Reporting
Incident Reporting

ANU Incident Notification Form

Questions marked * are mandatory questions.

The notification is to be completed by the affected person or the affected person's supervisor and submitted as quickly as practical after the incident occurring. Once submitted, your information will go directly to the Work Environment Group. If you wish to report a hazard that is not associated with an incident, please go to the Hazard Notification Form.

Details Relating to the Affected Person

*Incident Date: 11/24/2014
*Incident Time: 2:15 PM

*Name: [first name, surname]
Employee ID (if known):
*Phone:
*Relationship to ANU: [Please specify: examples]

*College/Administrative Area:
School/Faculty/Branch:
Supervisor Name:
Supervisor’s Phone No:
*Location of incident: [OR Other:]

*Were there multiple people injured in this incident? Yes, Work Environment Group staff will contact you for more details.

Incident Details

*Type of Incident: [Injury]
*Situation at Time of Incident:
Incident Reporting

- Second report submitted for internal revision (will be brought forward to the RSC Safety Committee)
- See Chapter 3 of RSC Safety Regulations
RSC Safety Committee

Represents various work areas at the RSC
Reports to/liaises with ANU WHS

- Mal McLeod (Academic, Chair)
- John Carver (Director)
- Geoff Deeble (School Manager)
- Julius Rucska (Facilities Manager)
- Vance Lawrence (Teaching)
- Nick Kanizaj (Synthetic Chem.)
- Torsten Schwich (RSC WHS)

- Jeremy Nugent (Postdoc Rep)
- Mark Ellison (Teaching)
- Hendrik Maat (Laser Safety)
- Ruhu Qi (Biochemistry)
- Tony Hill (Academic)
- TBA (Student Rep)
RSC ADVISORY COMMITTEE ON SAFETY

The RSC Advisory Committee on Safety (ACS) is composed of representatives from a variety of work areas across the RSC (e.g. academia, chemical research, biochemical research, workshops, students, postdocs, teaching). 5 meetings are held each year, and everyone at the RSC is encouraged to raise safety related issues with the Committee.

- Members of the Safety Committee
- Minutes of the Committee meetings can be found on the RSC intranet, and on the safety noticeboard in the foyer of building 137.
Smoking, Eating, Drinking

- **Smoking**
  - ANU smoke-free as of July 2015
  - Consider fire hazards, air intakes, fellow workers, OWN HEALTH

- **Eating, Drinking**
  - Tea rooms
  - Offices (snacks, drinks); respect colleagues’ privacy
  - **Not** allowed in any experimental areas
Clothing

- PPE to be worn in any chemical and biochemical laboratory and experimental corridors along those (chemical handling)
Clothing

- PPE to be worn in any chemical and biochemical laboratory and experimental corridors along those (chemical handling)
  - Safety glasses (provided by school; prescription glasses NOT suitable)
  - Lab coat (washing facility available)
  - Closed shoes
    - no high-heels
    - no thongs, slippers, ugg boots
Clothing

- Additional PPE
  - gloves (chemical)
  - face shield
  - gloves (thermal)
  - radiation protection
  - ear protection
  - laser goggles
Clothing

- **Consider**
  - Long pants highly encouraged
  - Contacts highly discouraged; worn at your own risk
Clothing

- PPE NOT to be worn outside lab areas
  - No gloves in public areas (staircases, toilets, offices, carpeted areas)
  - Lab coats not to be worn in offices, tea rooms, toilets etc.
Clothing

- **Careful with gloves**
  - Change regularly; certainly as soon as contaminated
  - Wear double-layers when doing high-hazard work
  - Wash hands before and after putting gloves on
  - Be aware of permeation (choose appropriate material)
# Clothing

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Barrier®</th>
<th>PVA™</th>
<th>Solvex®</th>
<th>Solvex®</th>
<th>AlphaTec®</th>
<th>AlphaTec®</th>
<th>Vortex®</th>
<th>Neotop™</th>
<th>Scorpio®</th>
<th>Chemi-Pro™</th>
<th>ChemiTek™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Laminated</td>
<td>Polyvinyl</td>
<td>Nitrile</td>
<td>Nitrile</td>
<td>Nitrile</td>
<td>Nitrile</td>
<td>Nitrile</td>
<td>Neoprene</td>
<td>Neoprene</td>
<td>Neoprene</td>
<td>Neoprene / Viton® / Butyl</td>
</tr>
<tr>
<td>Methylenechloride</td>
<td>75-09-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>4</td>
<td>2</td>
<td>&gt; 10</td>
<td>&gt; 10</td>
<td>&gt; 10</td>
<td>4</td>
<td>&gt; 10</td>
<td>1</td>
<td>10 - 30</td>
</tr>
</tbody>
</table>
What is a risk assessment?
What is a risk assessment?

Risk Assessment - Meaning

Do I need one for this reaction? It’s only quite small scale, and I don’t think it’s very dangerous – erm, I guess…
Do I need one for this reaction? It’s only quite small scale, and I don’t think it’s very dangerous – erm, I guess…

You have to have in place a risk assessment for the experiment you run **BEFORE** you carry out the work.
Risk Assessment - Categories

- **Risk Categories**
  - **Category A** (Access Hours; alone)
  - **Category B** (Access Hours; calling distance)
  - **Category C** (Business Hours; academic supervisor approval)
Risk Assessment - Categories

- **Category A** (Access Hours; alone)
  - Office work
  - Small sampling (UV-Vis, NMR, IR; no pressure equipment or other physically hazardous work, e.g. lasers)
  - **Attention**: “permitted outside Normal Access Hours” subject to discussion – not allowed at the moment

- **Category B1** (Access Hours; alone)
  - Reactions < 100 mL reactions
  - Low-risk substances
  - Workups (chromatography, drying, extraction) < 500 mL

- **Category B2** (Access Hours; calling distance)
  - Reactions < 500 mL
  - Moderately toxic, corrosive, allergenic
  - Workups < 2.5 L
**Category C** (Business Hours; authorised by group leader)

- Reactions > 500 mL
- Special precautions needed (UV, laser, radiation, face shield, experienced staff)

**C1**
- Strongly corrosive, irritant, pungent
- Mutagenic, teratogenic, carcinogenic
- Oxidising, pyrophoric, highly flammable
- React violently with water
- Non-commercial compounds

**C2**
- Explosive (incl. sealed tubes)
- HP
- Radioactivity
- Radiation Sources (ionising, laser, RF)
- Large scale (including distillations)
- Highly toxic

**C3** (two members of staff to be present at any time)
- Naked flames associated with flammable solvents (bio)
The following chemicals can only be used after special induction, with supervisor’s consent and additional risk assessment procedures:
- Cyanides
- Scheduled Carcinogens (including benzene)
- Hydrofluoric acid (HF)

- Safety Regulations;
- Discussion with your supervisor;
- Required paperwork in addition to the RA;
- All paperwork signed by your supervisor.
All work involving hazardous materials must be conducted in a fume cupboard (FC)
Risk Assessment – Safety Data

- Safety Data Sheets (SDSs)
Risk Assessment – Safety Data

1. Substance Identification
2. Hazard Identification
3. Composition
4. First Aid
5. Firefighting
6. Accidental Release
7. Handling and Storage
8. Exposure Controls/PPE
9. Physical and Chemical Properties
10. Stability/Reactivity
11. Toxicological Information
12. Ecological Information
13. Disposal
14. Transport (incl. DGC)
15. Regulations
16. Other Information
Risk Assessment – Safety Data

1.4 Details of the supplier of the safety data sheet
Company: Sigma-Aldrich Pty. Ltd.
12 Anella Avenue
CASTLE HILL NSW 2154
AUSTRALIA

Telephone: +61 2 9841 0555 (1800 800 097)
Fax: +61 2 9841 0500 (1800 800 096)

2.2 GHS Label elements, including precautionary statements
Pictogram

Signal word
Danger
## Risk Assessment – Safety Data

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3</td>
<td>Transport hazard class(es)</td>
</tr>
<tr>
<td>14.4</td>
<td>Packaging group</td>
</tr>
<tr>
<td></td>
<td>ADR/RID: I, IMDG: I, IATA-DGR: -</td>
</tr>
<tr>
<td>14.5</td>
<td>Environmental hazards</td>
</tr>
<tr>
<td></td>
<td>ADR/RID: no, IMDG Marine pollutant: no, IATA-DGR: no</td>
</tr>
<tr>
<td>14.6</td>
<td>Special precautions for user</td>
</tr>
<tr>
<td></td>
<td>no data available</td>
</tr>
</tbody>
</table>

### 15. REGULATORY INFORMATION

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

- **Standard for the Uniform Scheduling of Medicines and Poisons**
  - Schedule 7 (ACT, NT, TAS, WA only)
- **Carcinogen classification under WHS Regulation 2011, Schedule 10**
  - Not listed
Risk Assessment – ChemWatch

https://jr.chemwatch.net/

https://jr.chemwatch.net/chemwatch.web/account/login?ReturnUrl=%2fchemwatch.web%2f
CHEMWATCH AND CHEMICAL INVENTORY

The Chemical Management System (CMS) has been implemented at the ANU this year and includes a database for Safety Data Sheets (SDS) and an inventory of chemicals stored at the RSC. For SDS viewing only: ChemWatch (please note that this link only works from any ANU internal computer or via reverse proxy). For access outside the ANU or for access to the RSC chemical inventory, please use your u-number and HORUS/ISIS password to access ChemWatch via https://jr.chemwatch.net/chemwatch.web/home.

The CMS is replacing the former Chemical Inventory System (CIS). Please note that the CIS is currently still available (viewing only) but is not being maintained/updated and will be phased out late 2016/early 2017.
Risk Assessment – ChemWatch
### Risk Assessment – ChemWatch

#### GOLD FFX

**Search Full - Name/CAS: Trimethyl phosphine**

<table>
<thead>
<tr>
<th>TRACK</th>
<th>PART NO.</th>
<th>MATERIAL NAME</th>
<th>CAS NUMBER</th>
<th>VENDOR</th>
<th>SYNONYM</th>
<th>PREFERRED NAMES</th>
<th>RELEVANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td></td>
<td>trimethyl phosphite</td>
<td>121-45-9</td>
<td>Multiple</td>
<td></td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>trimethyl phosphite</td>
<td>594-00-2</td>
<td>Multiple</td>
<td>phosphine,</td>
<td>trimethyl-</td>
<td>96.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>triethyl phosphite</td>
<td>122-52-1</td>
<td>Multiple</td>
<td></td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>trimethyl phosphate</td>
<td>512-55-1</td>
<td>Multiple</td>
<td></td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>trimethyl phosphate</td>
<td>78-40-0</td>
<td>Multiple</td>
<td></td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>triethyl 4-phosphonocrotonate</td>
<td>20345-62-4, 42516-28-9</td>
<td>Multiple</td>
<td>triethyl trans-4-phoschono-2-butanoate</td>
<td></td>
<td>86.67</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>triethylphosphine oxide</td>
<td>17262-51-0</td>
<td>ChemWatch</td>
<td>triethyl-phosphine oxide</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>(trimethyl phosphite)copper(II) iodide</td>
<td>34835-53-8</td>
<td>Multiple</td>
<td></td>
<td></td>
<td>83.67</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>(trimethyl phosphite)copper(II) iodide</td>
<td>51717-23-8</td>
<td>Multiple</td>
<td></td>
<td></td>
<td>80.67</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>triethyl 3-methyl-4-phosphonocrotonate</td>
<td>41881-54-7</td>
<td>Multiple</td>
<td>triethyl 3-methyl-4-phoschono-2-butanoate</td>
<td></td>
<td>76.67</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>Eastman Triethyl Phosphate</td>
<td></td>
<td>Multiple</td>
<td></td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>ocyltrimethylammonium dioctadecyli phosphate</td>
<td>107008-33-3</td>
<td>ChemWatch</td>
<td>N,N,N-trimethyl-1-octanaminium dioctadecyli phosphate</td>
<td></td>
<td>61.67</td>
</tr>
</tbody>
</table>
Risk Assessment – ChemWatch
# Risk Assessment – ChemWatch

## SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

<table>
<thead>
<tr>
<th>Product Identifier</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Product name</strong></td>
<td>TRIMETHYLPHOSPHINE</td>
</tr>
<tr>
<td><strong>Chemical Name</strong></td>
<td>trimethylphosphine</td>
</tr>
<tr>
<td><strong>Synonyms</strong></td>
<td>(CH₃)₃P, C₃-H₉-P, PMe₃, TRIMETHYLPHOSPHINE 1.0M SOLUTION IN THF, Trimethylphosphine 97%, phosphine, trimethyl-</td>
</tr>
<tr>
<td><strong>Proper shipping name</strong></td>
<td>PYROPHORIC LIQUID, ORGANIC, N.O.S. (contains trimethylphosphine)</td>
</tr>
<tr>
<td><strong>Chemical formula</strong></td>
<td>C₃-H₉-P</td>
</tr>
<tr>
<td><strong>CAS number</strong></td>
<td>594-09-2</td>
</tr>
</tbody>
</table>
Risk Assessment – ChemWatch
Risk Assessment – ChemWatch
Risk Assessment – Record

- Must be in lab book
- Minimum information required (RSC Regs, Ch. 6)
- Refer to for repeat experiments
- Available for emergency response (FC)
Risk Assessment – Record

- Consider non-chemical hazards
# Risk Assessment – Record

## Reaction Scheme:

## Risk Category:

<table>
<thead>
<tr>
<th>User:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact:</td>
<td></td>
</tr>
<tr>
<td>Lab:</td>
<td></td>
</tr>
<tr>
<td>Research Group:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reactant, Solvent, Product</th>
<th>CAS-RN (or N/A)</th>
<th>Chemical Hazard Number (or N/A)</th>
<th>Hazard Type</th>
<th>DGC</th>
<th>Quantity</th>
<th>Chemical Hazard Rating (or predicted)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special precautions for experiment (cont’d):

Potential hazards of wastes/residues:

Proposed treatment of wastes/residues:

Electrical equipment in good working order and in test (circle): Yes No N/A

All water hoses tied up securely (circle): Yes No N/A

Glassware checked for cracks/scratches (circle): Yes No Other equipment (state):  

Physical hazards (circle): Vacuum Pressures X-ray UV Cryogenic liquid Heat Laser Other (state):  

Appropriate type of gloves:  

Type of additional PPE required:

Assessed Risk Category (circle): B1 B2 C1* C2* CS*  

Working with (circle): HP* Opioids* Scheduled Corinogens* Additional documents required  

Risk Assessment approved by (academic supervisor for all undergraduates and all cat. C work): Date:  

For cat. C, experimental setup checked by (experienced group member): Date:  

* Bare skin (e.g., arms) that is likely to get contaminated or affected physically should be avoided and is highly recommended against for all category C work.
**Reaction Scheme:**

Free alcohol

Chloromethyl methyl ether

Dimethylaminopyridine

Diisopropylethylamine

Dichloromethane

Protected alcohol

---

### Reactant, Solvent, Product | CAS-RN (or N/A) | Chemwatch Number (or N/A) | Hazard Type | DGC | Quantity | Chemwatch Hazard Rating (or predicted) |
--- | --- | --- | --- | --- | --- | --- |
Free alcohol | N/A | N/A | Caution: research chemical; hazards unknown. | N/A | 6.9 g | Moderate |
Chloromethyl methyl ether | 107-30-2 | 1239 | Scheduled carcinogen. Highly flammable. May form explosive peroxides. Cumulative effects. Lung damage if swallowed. | 6, 3 | 42 mL | Extreme |
Dimethylaminopyridine | 1122-58-3 | 17148 | Very toxic (skin), causes burns. Carcinogenic. Serious damage to eyes. Toxic to aquatic organisms (adverse effects). | 6, 8 | 13.7 g | Extreme |
Diisopropylethylamine | 7087-68-5 | 36005 | Highly flammable. Causes burns. Harmful if swallowed. Risk of serious damage to eyes. Cumulative effects on exposure. | 3, 8 | 117 mL | High |
Dichloromethane | 75-09-2 | 1593 | Irritant; penetrates nitrile gloves. Cumulative effects. Suspected carcinogen. Inhalation causes health damage. | 6 | 80 mL | Moderate |
Protected alcohol | N/A | N/A | Caution: research chemical; hazards unknown. | N/A | Product | Moderate |

---

**Special precautions for experiment (controls):**
- Scheduled carcinogen; follow appropriate protocol. Reaction only to be carried out by authorised person (refer to research group specific SWMS). MOM-Cl not to be stored in lab area for extended period of time; to be returned to storage area without delay. PPE to be worn at all times when handling MOM-Cl. Strictly use in extraction hood only within normal business hours in the presence of others.
- Residues and reaction mixtures might contain residual carcinogenic material. Burns and toxic short- and long-term effects will occur on exposure to the reaction mixture.
- Collect all residues in separate container and dispose of as carcinogen waste in appropriate manner. Do NOT empty into drains. Rinse all contaminated glassware well and collect washing solutions separately. For removal of all spills, wear double-layer of nitrile gloves. Dispose of all tissue as carcinogenic waste.

**Electrical equipment** in good working order and in test (circle): Yes

**Glassware** checked for cracks/stars (circle): Yes

**Other equipment** (state):

**Physical hazards** (circle): Vacuum Pressure X-ray UV Cryogenic liquid Heat Laser Other (state):

**Assessed Risk Category** (circle): B1 B2 C1 C2 C3

**Working with** (circle): HF Cyanides Scheduled Carcinogens Additional documents required

**Supervisor's signature** (mandatory for undergraduates and all cat. C work): Date:
Special Facilities

- **High Pressure**
  - Currently in old building, but in the process of being moved.
  - Contact: Nicholas Kanizaj

- **Toxic/strong smell**
  - Building 137, 3rd floor Birch Wing, Rm 3.63
  - Contact: Nicholas Kanizaj

- **Microbiological Hazard**
  - Building 137, ground floor Sargeson
  - Building 137, 2nd floor Sargeson, Rm 2.31
  - Building 137, 3rd floor Birch, Rms 3.70, 3.71
  - Contact: Ruhu Qi, Hideki Onagi

- **Flammable**
  - Building 137, 2nd floor Birch Wing, Rm 2.63
  - Contact: Nicholas Kanizaj
Storage and Disposal of Chemicals

- Segregate Dangerous Goods Classes (DGCs)

- Only store chemicals with compatible DGCs/properties together
### Storage and Disposal of Chemicals

<table>
<thead>
<tr>
<th>CLASS or DIVISION</th>
<th>1</th>
<th>2.1</th>
<th>2.2</th>
<th>2.3</th>
<th>3</th>
<th>4.1</th>
<th>4.2</th>
<th>4.3</th>
<th>5.1</th>
<th>5.2</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Explosives</td>
<td>(1)</td>
</tr>
<tr>
<td>2.1 Flammable gas</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2.2 Non-flammable non-toxic gas</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2.3 Toxic gas</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>3 Flammable liquids</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4.1 Flammable solids</td>
<td>(1)</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4.2 Spontaneously combustible</td>
<td>(1)</td>
<td>N</td>
</tr>
<tr>
<td>4.3 Dangerous when wet</td>
<td>(1)</td>
<td>N</td>
</tr>
<tr>
<td>6.1 Oxidising substances</td>
<td>(1)</td>
<td>N</td>
</tr>
<tr>
<td>5.2 Organic peroxides</td>
<td>(1)</td>
<td>N</td>
</tr>
<tr>
<td>6 Toxic or infectious substances</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>7 Radioactive material</td>
<td>(1)</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>8 Corrosive substances</td>
<td>(1)</td>
<td>N</td>
</tr>
<tr>
<td>9 Miscellaneous hazardous</td>
<td>(1)</td>
<td>N</td>
</tr>
</tbody>
</table>

### Notes:

- (1) Explosives
- (2) Flammable gas
- (3) Non-flammable non-toxic gas
- (4) Toxic gas
- (5) Flammable liquids
- (6) Flammable solids
- (7) Spontaneously combustible
- (8) Dangerous when wet
- (9) Oxidising substances
- (10) Organic peroxides
- (11) Toxic or infectious substances
- (12) Radioactive material
- (13) Corrosive substances
- (14) Miscellaneous hazardous
Storage and Disposal of Chemicals
Storage and Disposal of Chemicals
Storage and Disposal of Chemicals

- Unique barcodes on chemicals are recorded on inventory
- Put chemicals back where they came from
- Storage locations on the Chemical Management System (CMS)
Storage and Disposal of Chemicals

- **All chemicals must be labelled**
  - Commercial chemicals (GHS compliant manufacturer label)
  - ChemWatch label
    - Decanted chemicals;
    - Chemical Waste
    - Worn commercial label
  - Research samples:
    - Researcher
    - Date
    - Structure
    - Known hazards ("pyrophoric", "toxic", "corrosive")
    - Lab book
Storage and Disposal of Chemicals


Storage and Disposal of Chemicals

- **Waste Categories (Contact: Torsten Schwich, Nick Kanizaj)**
  - Chlorinated organic solvents
  - Non-chlorinated organic solvents
  - Benzene residues
  - Acetone waste (do not mix acetone and chloroform)
  - Chromatographic phases
  - Metal waste for recycling
  - Heavy metals
  - Mercury waste
  - Aqueous waste (neutralised)
  - Glass sharps (enclosed plastic container)
  - Metal sharps, syringes, blades (enclosed plastic container)
  - Biohazard waste (double biohazard bag)
  - Decontaminated brown glass
  - Clear glass and contaminated brown glass
# Storage and Disposal of Chemicals

## Waste Type

<table>
<thead>
<tr>
<th>Waste Materials (Non-Glass)</th>
<th>Sharps</th>
<th>Solvent / Liquid Waste</th>
<th>Solid Chemical Waste</th>
<th>Packing Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminated materials</td>
<td>Metal</td>
<td>Organic</td>
<td>Other chemicals</td>
<td>Plastic, glass</td>
</tr>
<tr>
<td>Biological waste</td>
<td>Glass</td>
<td>Halogenated</td>
<td>Other chemicals</td>
<td>Plastic, glass</td>
</tr>
</tbody>
</table>

### Examples

- Gloves:
  - Contaminated paper, Syringes (no needles)
  - Micropipette tips
  - Gloves, Contaminated plastic wear
- Needles, Scalpel
- Pipettes
- Beakers: Glassware, plastic, Winchester
- Test tubes, etc.
- Chlorinated solvents (e.g., DCM, CHCl3)
- Unlabelled reagents
- Chlorinated aqueous residues, water, etc.
- Heavy metal solutions
- Research samples, redundant fine chemicals
- Other chemicals
- Other chemicals
- Absorbent waste

### Containment

- Do not overfill. Seal off the bag with a cable tie. For heavily contaminated waste (e.g., after spill), use a heavy-duty waste bag and submit separately. Do not put gloves in black bag waste bins.
- Double-bag all hazardous waste disposal bags. Include name and contact details between first and second bag. Seal both bags with a cable tie.
- Hand-free removal of needles from syringes: needle drops into yellow sharps container. Fill to fill line, then cap container.
- Place pipettes and small glass pieces in sealed and labeled 15L plastic drum.
- Only colourless Winchester. Drain clear Winchester and other clear glassware are rinsed and reagent-free before disposal.
- 5L plastic drums with appropriate DDD label. No aqueous residues, no acids, no alcohols. Do not overfill the container – leave sufficient head space.
- Place in a container of an appropriate size, volume, and material (pound glass where possible). Attach a proper, printed label. List all major hazardous components/materials/contaminants.
- Place striped and dry waste into screw-capped plastic container with appropriate printed label.
- Ensure all packing material has been decontaminated and allowed to vent for secondary containment required (No SWEX).

### Disposal

- Place into hazardous container (waste/Disposal) Room 1.148 at loading dock.
- Place in green hopper for landfill.
- Disposal at “General Waste and Recycling” Room 1.148 at the loading dock. Tuesday 0930 to Friday 1130.
- Recycling bin.
Storage and Disposal of Chemicals
Storage and Disposal of Chemicals

“Hmm, not sure. Well, I’ll just put it here”

No good.

Ask if in doubt!
Working with the following poses safety risks in addition to chemical hazards, thus requiring special induction and monitoring measures:

- Vacuum and high vacuum (cracks, stars, implosions)
- Lasers (eye and skin damage)
- Radioactive material (long-term effects; no acute signs of contamination)
- X-ray (exposure to high energy radiation; long-term effects)
- Biohazards (bacterial infections)
- Strong magnetic fields (pacemakers, metal implants)
- Cryogenic liquids (liquified oxygen, burns, bursting dewers; eyes particularly vulnerable)
- Solvent purifier (contamination, highly flammable)
Additional Hazards

The following chemicals pose increased safety risks
- Alkali metals (Li, Na, K)
- Organometal reagents (RLi, e.g. n-BuLi, t-BuLi, Grignards)
- Hydrides (LiAlH$_4$, CaH, KH, NaH, NaBH$_4$)
- Sodium azide (NaN$_3$)
- Primary and secondary phosphines (and some tertiary alkyl phosphines)
- Ethers
- HF
- Hg vapours
- Organomercury compounds
- Perchlorates
- CO
- OsO$_4$
General Housekeeping

- Remove spills immediately
- Clean fume cupboards regularly
- Don’t assume someone else will do it; won’t happen
- Return what you borrow
- Keep chemicals where they belong (CMS, compatibilities)
- Empty wastes regularly
- Don’t stock-pile dirty glassware
- Only clean equipment goes to the workshop
After-Hours Building Access
After-Hours Building Access

RSC Internal Page

After-Hours Check-In

RSC Check-in System

Current time: 30-7-2015 8:04:22

University ID or Surname: (RSC personnel only)
After-Hours Building Access

After-Hours Check-In

RSC Check-in System

Current time: 30-7-2015 8:04:47

University ID or Surname: u4450603 (RSC personnel only)
After-Hours Check-In

RSC Login System - Step 2

Please verify that your default room is where you will be working.

Thursday, 30 July 2015 08:05
User: Torsten Schwich
Room: 1.68
Work class:

Submit
Change room
Cancel
After-Hours Building Access

After-Hours Check-In

People currently in the building:

Current time: 30-07-2015 8:05:54
Page last updated: 30-07-2015 8:05:40

<table>
<thead>
<tr>
<th>Person</th>
<th>Room</th>
<th>Time in</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Graeme Humphrey</td>
<td>2.06</td>
<td>2015-07-19 09:49:13</td>
<td>A</td>
</tr>
<tr>
<td>Eliza Tarcoveanu</td>
<td>3.77</td>
<td>2015-07-29 19:12:40</td>
<td>A</td>
</tr>
<tr>
<td>Torsten Schwich</td>
<td>1.68</td>
<td>2015-07-30 08:05:34</td>
<td>A</td>
</tr>
</tbody>
</table>

Return to main page
Job Requests
Job Requests

Welcome to the RSC Job Request System.
Select an option on the left to submit or manage job requests.
Job Requests
Job Requests

All jobs requiring repair or modification to lab equipment must supply the following information:

- The chemicals/solvents it was in contact with;
- Who last used the item and who cleaned it;
- How the item was cleaned, include any reagents and solvents used.
- Has the item been oven dried after cleaning (applicable only to non-electronic items).

It is entirely up to the workshop staff to decide whether an item is in acceptable condition. Items that are not considered acceptable or for which insufficient Glassware repairs will not start until the above information is supplied.
Concluding Remarks

Come and ask before getting into uncomfortable situations.

If nervous about a procedure, have someone experienced around or have a rest until that person can be around