Important Dates

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 2013</td>
<td>Honours information evening</td>
</tr>
<tr>
<td>October - December 2013</td>
<td>Discuss projects with members of staff</td>
</tr>
<tr>
<td>30 November 2013</td>
<td>Deadline for application for Honours scholarship; submit form to RSC Student Officer (Alison Scott)</td>
</tr>
<tr>
<td>December 2013</td>
<td>Enroll for CHEM4005 at the College of Science Office</td>
</tr>
<tr>
<td>December 2013- January 2014</td>
<td>Decide on the project you would like to undertake</td>
</tr>
<tr>
<td>24 January 2014 or earlier</td>
<td>Inform Honours Coordinator of your firm choice of supervisor and project</td>
</tr>
<tr>
<td>28 January 2014</td>
<td>Commence work on your project</td>
</tr>
<tr>
<td>In the week of 28 January 2014</td>
<td>Honours induction session</td>
</tr>
</tbody>
</table>

Honours Year *(note that the specific dates will be notified early in the Honours year)*

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2014</td>
<td>Introductory seminars</td>
</tr>
<tr>
<td>July 2014</td>
<td>Mid-term reviews due</td>
</tr>
<tr>
<td>Late October 2014</td>
<td>Applications for PhD admission and scholarships due</td>
</tr>
<tr>
<td>23 October 2014</td>
<td>Theses due</td>
</tr>
<tr>
<td>Early November 2014</td>
<td>Final seminars (1-2 weeks after theses submitted)</td>
</tr>
<tr>
<td>Middle November 2014</td>
<td>Oral examinations (1 week after final seminars)</td>
</tr>
<tr>
<td>Late November 2014</td>
<td>Chemistry Examiners meeting</td>
</tr>
<tr>
<td>Late November 2014</td>
<td>CPMS Board of Examiners meeting</td>
</tr>
<tr>
<td>First Monday in December 2014</td>
<td>Release of results</td>
</tr>
</tbody>
</table>

People to Contact for Further Information and Assistance

<table>
<thead>
<tr>
<th>Contact</th>
<th>Position</th>
<th>Email</th>
<th>Phone #</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russell Barrow</td>
<td>Honours Coordinator</td>
<td>rab@anu.edu.au</td>
<td>x53419</td>
<td>2.05</td>
</tr>
<tr>
<td>Geoff Salem</td>
<td>Associate Director (Education)</td>
<td>geoff.salem@anu.edu.au</td>
<td>x53043</td>
<td>1.56</td>
</tr>
<tr>
<td>Alison Scott</td>
<td>Student Officer</td>
<td>alison.scott@anu.edu.au</td>
<td>x56110</td>
<td>1.65</td>
</tr>
</tbody>
</table>
Contents

Introduction 4

Admission 5

Assessment 7

Courses 10

Seminars 10

Theses 11

Oral Examination 12

Honours Examiners Meeting 13

Info on grading of thesis, final seminar and orals for Chemistry 2014 14

Appendix A: Colleges of Science Honours Working Rules 17

Appendix B: Articles Concerning Seminar Preparation 21
Introduction

Honours in Chemistry is extremely worthwhile:

• it is highly respected by potential employers in industry and the public sector

• it is highly recommended for those contemplating a postgraduate degree

• it provides a "real world" environment in which to round off your education.

Specifically, you have the opportunity to undertake project work (not usually available in undergraduate study), work as part of a team, and get to know everyone in the RSC on an informal as well as a formal basis.

Candidates for Honours in Chemistry are expected to consolidate their general knowledge in chemistry that has been gained in the undergraduate course, and to gain a considerable body of new knowledge and experience with some freedom of selection within fields of interest of the academic staff, and within the range of facilities available.

The research project is your major activity in the Honours year. For possible projects, it is best to contact individual academic staff at the RSC directly to tailor a project to the student’s interest. For the research interests of different academics in Chemistry, see http://chemistry.anu.edu.au/rsc/. Each Honours candidate is expected to make use of, and gain skills in, a range of techniques and to acquire facility in the interpretation of results. The project may involve substantial bench-work, or a purely theoretical emphasis, or some combination of both. The one important point to bear in mind in undertaking a project is that it involves working closely with a member of staff who is supervising the project. The significance of your relationship with your supervisor cannot be overemphasised.

The courses offered in the Honours year have varied content. The specific courses available differ from year to year - the courses available in 2014 will be known in January/early February 2014. Some courses assume prior study in particular areas at undergraduate level while others have no prerequisites. The Honours year requirements for courses undertaken in the RSC and the Research School of Physics and Engineering are detailed below. Courses will be available such that all Honours students have the potential to undertake sufficient courses internally to satisfy the Honours year requirements.
Admission

To gain admission to the Honours year, the Colleges of Science require you to have gained:

(a) 48 units in B- (second year) and C- (third year) courses "relevant" to chemistry (relevant courses are primarily those chemistry courses in the area of proposed specialisation, but other courses of chemistry or in different disciplines can be appropriate to particular research topics);

(b) the attainment of a grade point average of 6 over these 48 units, where HD = 10, D = 8, CR = 6, P = 4 (note for those applying to carry out Honours at ANU who have undertaken undergraduate studies at other universities: a full year load at ANU comprises 48 units at second year and 48 units at third year level. This means that 50% of your second and third year courses must be relevant to chemistry).

Prospective Honours students who do not meet this minimal entry requirement should consult with the Honours Coordinator and/or the Associate Director (Education) as early as possible, preferably in November. Special consideration can be given but this requires that the case be properly prepared and submitted to the Colleges of Science for approval. Regulations governing admission are in the Colleges of Science Honours Working Rules (Appendix A). Prospective Honours students from other universities should forward a copy of their official academic transcript to the Honours Coordinator so that the adequacy of their academic background can be confirmed.

Meeting the College requirement is not sufficient qualification for Honours enrolment. All prospective Honours students must also obtain acceptance from a potential supervisor (a member of the academic staff of the Research School of Chemistry), and from the Associate Director (Education) before being admitted to the Honours course. Tentative statements of acceptability should normally be solicited in November and early December. For mid-year starters, the beginning of second term is an appropriate time for seeking such approval.

Finally, you should again see the Honours Coordinator and the Student Officer on or before the starting date for registration and initiation. The photographer will take passport and collective photos for building access, etc, in early February. Any questions on course structure, arrangements, details, etc., are to be directed to the Honours Coordinator.

Entering the Honours Programme

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>October - December 2013</td>
<td>Discuss projects with members of staff</td>
</tr>
<tr>
<td>December 2013 or earlier</td>
<td>Complete pre-enrolment form and return to Alison Scott or Russell Barrow</td>
</tr>
<tr>
<td>December 2013 - January 2014</td>
<td>Decide on the project you would like to undertake</td>
</tr>
<tr>
<td>28 January 2014</td>
<td>Commence work on your project</td>
</tr>
</tbody>
</table>
Formal Enrolment Procedures

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 Jan. 2014, or earlier</td>
<td>Discuss and confirm your choice of research project and supervisor with the Honours Coordinator and Associate Director (Education) before beginning your course.</td>
</tr>
</tbody>
</table>

Enrolments between 29 November and 24 January are possible but miss the deadline for Honours Scholarships (see below).

Scholarships

Students must apply for an ANU Honours Scholarship (valued at $5,000) if they wish to be considered for a Chemistry Honours Scholarship (also valued at $5,000). Chemistry Honours Scholarships are only awarded to eligible students in the event that they are not successful in securing an ANU Scholarship. Eligible Chemistry Scholarship students will have a GPA (grade point average) of 8 (where HD = 10, D = 8, CR = 6, P = 4, Fail = 0).

Students should apply for the Honours Scholarship at the same time as they apply for the Honours Programme - if not awarded an ANU scholarship, the application is automatically considered for an RSC scholarship. Deadline: 29 November 2013.

Attendance

The Honours year begins in the last week in January and finishes in November on the Friday 2-3 weeks after cessation of lectures with an oral examination. It is not usual for Honours students to take vacations of any duration during their courses. If you are contemplating a sizeable break, consult your supervisor. Significant absences due to illness must be accounted for with appropriate certification at the time of absence. Similarly, supervisors absent for any lengthy periods of time necessitates appointment of a co-supervisor (with the agreement of the Chemistry Honours Committee) – an absence of 3 months or more renders an academic ineligible to supervise Honours students in that year.

Orientation

Lee Welling (RSC Safety Manager) will meet with all Chemistry Honours students collectively in or about the first week of the Honours course, to provide an induction to Honours. This introduction to technical matters covers *inter alia* location of chemical and solvent stores, instrumentation, safety issues, access cards for RSC, how to obtain cryogens, how to arrange for mechanical, electrical or glassblowing workshop jobs to be carried out, and how to order gases and other chemicals.
Mid-year Intake

Students who complete the requirements for the pass degree in mid-year may begin the Honours course in second semester, starting in early July and submitting their thesis at the end of May of the following year (oral defense approx. one week after that, seminar in late April). This period includes a mandatory holiday of a fortnight when the University is closed for the Christmas/New Year break. It is advisable to consult carefully with your prospective supervisor, the Honours Coordinator and the Associate Director (Education) before choosing this option, as Honours courses are generally only available once per year, in first semester. This may have adverse consequences where the course content is highly relevant to your Honours research. In addition, students generally find it preferable to complete coursework requirements in the first half of their Honours Year, an option impossible to accommodate for mid-year starters.

Assessment

The Honours Degree is graded into Class 1 (100-80%), Class 2 Division A (79-70%), Class 2 Division B (69-60%), Class 3 (59-50%), or Honours may not be awarded. The Honours grade is based solely on your performance over the Honours year; no account is taken of your previous record. The research performance, thesis, oral examination, seminar and course work all contribute to the total assessment.

The following assessment is proposed for 2014:

- Courses (3 @ 10% each) 30%
- Research Project and Thesis 50%
- Research Seminar 10%
- Oral Examination 10%

Research Projects

The research project is the distinctive feature of the Honours year. Every Honours student carries out a research project as the single major undertaking during the year. You choose your own research project and your supervisor from the list given later in this booklet, or from discussions with other possible supervisors (there may be a restriction if another student has already been accepted for the project you choose). A good working relationship with your supervisor is of paramount importance for the success of your project and your Honours year. The choice of project is also important, and you are advised to obtain as much information as possible about the various projects before making your decision. *Talk to all prospective supervisors.* Find out exactly what is involved in particular projects and what would be expected of you if you were to undertake a particular project. It may be that the courses you have undertaken as an undergraduate make you much better qualified for some projects rather than others. Note that the current Chemistry Honours policy generally restricts academic staff to supervising a maximum of 3 solely supervised Honours students at one time (or 4 co-supervised students).
Professional Development

In addition to the formal work associated with the Honours year, you are encouraged to further your professional development as a chemist in a variety of ways:

• instruction in the teaching and demonstration of chemistry and chemical techniques to first year students in the undergraduate laboratory (apart from enhancing your CV, this is a useful supplement to your income). Note that this part-time demonstrating is restricted to the first half of your Honours year (1st semester for conventional starters, 2nd semester for the mid-year intake), and that it is mandatory.

• acquiring competence in literature searching, and developing skills for the efficient acquisition of all types of chemical information from large collections and databases.

• attendance at the relevant seminar program (Inorganic, Organic, Biological or Physical & Theoretical).

• taking out student membership of the Royal Australian Chemical Institute (RACI), the professional organisation for chemists. The ACT branch of RACI currently pays the first year's membership dues for all new student members, so it won't cost you a cent!

• attendance at appropriate divisional meetings of RACI, or other relevant professional bodies.
Grading Criteria (from the Colleges of Science Handbook)

- Honours III 50-59:
The student has demonstrated some knowledge of the relevant background literature, but with serious gaps, and limited understanding. The student applied relevant techniques and carried out research work, but needed considerable assistance and showed limited understanding of the procedures employed. The student presented their results, though in a somewhat muddled and/or incomplete way.

- Honours IIB 60-69:
As for Honours III, but in addition:
The student has demonstrated a reasonable knowledge of the relevant background literature, with only a few gaps, albeit in a somewhat uncritical way. The student demonstrated that they had learned many of the relevant skills (which might include laboratory techniques, computer programming and statistical analysis). The student presented their results in an appropriate format, with good use of English.

- Honours IIA 70-79%:
As for Honours IIB, but in addition:
The Student has demonstrated a thorough knowledge of the relevant background literature, though still with limited critical appreciation. The student demonstrated reasonable technical mastery of all the relevant skills. The student worked hard, efficiently and carefully. The student presented their results and/or data clearly and succinctly.

- Honours I 80-89%:
As for Honours IIA, but in addition.
The Student has critically analysed the relevant background literature rather than merely summarising it. The thesis demonstrates a clear appreciation of how their work fits into the larger field of research. The student demonstrated considerable technical mastery of all the relevant skills. They showed some appreciation of the limitations of the experimental design or techniques used and have outlined future research directions that are feasible. The student put forward their own useful and valid ideas relating to the project. The student further demonstrated the ability to see, and take, the logical next step without excessive 'prodding', the ability to act independently of the supervisor's immediate direction and presence, but the maturity to know when the supervisor’s help is necessary. The student demonstrated the persistence and ability to carry on under difficulty. They picked up new concepts and skills rapidly. They showed the ability to work effectively in the presence of others.

- Honours I >90:
As above, but in addition:
The student obtained concepts and procedures independently from the literature and at least discussed a use for them in the study. The student demonstrated impressive technical mastery of all the relevant skills. They demonstrate a good understanding not only of the techniques they employed, but other alternative techniques and the reasons for choosing between them. They have outlined possible future directions, which are not merely feasible, but which show considerable originality. The student not only put forward useful and valid ideas relating to the project, but also demonstrated the ability to critically evaluate and act upon such ideas.
Courses

You are required to complete and pass four Honours courses in the Chemistry program (advertised separately), each consisting of about eight lectures or equivalent. Your best three Honours Chemistry course marks will be used towards your overall Honours grade, and are collectively worth 30% of your final mark. Assessment for these courses is flexible, with some courses assessed by examination (including oral presentation), some by assignment, and some by a combination of the two.

Seminars

Honours students are asked to present two talks during the course. The first of these, in the first semester mid-semester break, is not assessed. Presentations are of 10 minutes duration followed by 5 minutes for questions. The aims of the first seminar are to:

- introduce members of the RSC to the research projects being undertaken by the Honours students.
- give students valuable experience in organisation and presentation of a seminar.

The second seminar, in early November, is assessed (10% of your final mark). Presentations are of 20 minutes duration followed by 10 minutes for questions. The aim of the second seminar is to review the year's research. For mid-year starters, of course, the November talk becomes the introductory one while the April one is assessed.

In addition, discussion groups may be organised and students are expected to attend School seminars. Attendance at the Inorganic, Organic and/or Physical/Theoretical seminar programs is strongly encouraged.

Seminar Organisation

It is recommended that the final seminar has the following outline:

(i) Background, aims and significance of the project
(ii) Description of methods used and results obtained
(iii) Conclusions drawn
(iv) (If necessary) Future work possibly required to complete the project

Do not try to cram too much into the allotted time. You are advised to spend sufficient time planning the talk and preparing slides so that the audience can gain an appreciation of the work that you have done.

Some further advice is attached as Appendix B which students may find helpful in seminar construction and delivery. Although one article is written specifically for physicists, the advice contained therein is also relevant to chemistry presentations.

Mid-course Reports

As practice in technical report writing and in preparation for the final Honours thesis, students are asked to write a short progress report (no more than 20 pages) just over
mid-way through the course. These reports are, in a sense, mini-theses and as such should conform to the pattern of presentation set out in the next section. They are not assessed but staff members are asked to criticise and comment before returning them. The submission deadline is 2.00 pm on the last Friday of the mid-year break (or the equivalent date for mid-year starters).

Theses

As the centre-piece of your year's work, your thesis merits much care and attention (your research is worth 50% of your final mark). Assessment of your thesis is by a panel of four academic staff (nominated by the Honours Committee), who are informed by your supervisor’s comments on your research performance. The thesis should be in A4 format, typed in 12 point font, 1.5 line-spaced, with 2 cm margins all around. Early drafts of the thesis should be shown to and discussed in detail with the supervisor, and advice should be freely sought for its preparation, although the final version should be essentially the candidate's own work. Submission is electronic as a PDF. You should regard the submission date as fixed: extensions of time are rare and the College has penalties for late submission. Some information on regulations for thesis preparation follows.

Regulations and Guidance for Thesis Preparation

The length of your thesis should be *no more than 40 pages*, including figures, tables and references. The style of the theses should be modelled on the scientific literature and recent top class Honours reports (available from John McLelland). A thesis, however, is not a scientific paper. It should contain more background material, more information on the ups and downs of the project, and more of the student's own thoughts. The latter especially are important from the viewpoint of the staff examining the thesis, when the work undertaken is a continuation of work begun by a previous student. In such cases the introduction and discussion will run the risk of taking on a second-hand quality which needs relief through an expression of the student's own synthesis of the subject. The thesis should not be unnecessarily expanded by inclusion of irrelevant material, though; it should in general consist of the following, not necessarily in this order:

(a) a short preface
(b) an introduction dealing briefly with previous work and background relevant to the work
(c) a general method or description of the procedures used to carry out the research, which leads to
(d) a discussion of results, and
(e) a conclusion and/or summary, including suggestions for further work, and if necessary
(f) a more detailed experimental or theoretical section (which could be included as an Appendix).

The introduction, method and discussion may in some cases conveniently be combined and need not necessarily be classified as such, but in any case should not include experimental details unless this is central to the research. All claims must however be supported by references to published literature or by results described in the experimental section. The latter should be a complete account of your own work, with repetitions of experiments in readily accessible literature given as references.
only. Schemes, structural formulas, and diagrams should be carefully drawn and identified by appropriate enumeration, and set out at convenient places in the text. Theses should be both meticulous and consistent in respect of setting out, preparation and labelling of graphs and tables, and in the citation of references. The latter in particular should follow the style of a selected leading journal, which should be named as follows at the head of the list of references: "Citation convention: J. Am. Chem. Soc." (for example). In many instances it will be most appropriate to present lengthy tables of data, methods of calculation, spectroscopic data and other information that is somewhat peripheral to the main body of the work as appendices at the end of the thesis. Footnotes throughout the text may also be used to advantage in certain instances, but care should be exercised in their overuse. Pictorial presentation of spectra should be avoided unless specific detail is essential to illustrate a particular point.

There are several useful books available in the Library that might be of some assistance as a guide to style and format. Some that are particularly relevant and their call numbers are:
- "The Art of Scientific Writing - from Students Reports to ... QD9.I5.E23 (Hancock).

After submission of the Thesis, you are asked to keep in touch with the Departmental Administrator until after the Honours Examiners' meeting in case any points needing clarification arise.

Oral Examination

The oral examination is worth 10% of your final assessment and is your chance to clarify or comment on the contents of the thesis. The supervisor is present for the oral exam, but does not contribute to the discussion, only stepping in if questions from the other academic staff depart significantly from the contents and theme of the thesis. An observer from the Chemistry Honours Committee is also present to provide guidance for balance between different panels. The oral exam commences with the candidate provided with half of the questions in an adjacent room for the 30 min preceding the exam. The exam commences with a 1-2 minute overview of the thesis work, and lasts for 30 minutes, or until academic staff are satisfied that the candidate has clarified all questions/points raised, whichever comes sooner.

Honours Examiners Meeting

Following the last assessable component of your Honours year, the oral examination, there is an Honours Examiners meeting (held either on the day of the oral examinations or shortly thereafter), during which the grades for all candidates will be finalised. These grades are not official until ratified at the Colleges of Science Board of Examiners meeting. Until then, it is not permissible for the supervisor to release the grade attained to the candidate.
Information about the Grading of the THESIS, FINAL SEMINAR, and ORALS for Chemistry Honours

The three research-based components of the grade are:

(1) Three assessors will read the Honours thesis first and meet to arrive at a thesis score, in the presence of an observer and the supervisor.

(2) Final seminars will be held, and those assessors who are present for each and every seminar will provide a numerical evaluation of the seminar.

(3) Oral exams will be held, and the assessors (thesis examiners, in the presence of an observer and supervisor) will provide a numerical evaluation of the oral exam.

These three “grades” assess distinct skills and outcomes. This document states how each of these three components of the Honours program are assessed.

Written Thesis

The thesis is a record of the student’s contribution against a background of contributions. The assessors mark/compare theses according to:

1. Organisation/creativity/scientific content. As theses content varies with project/area, the assessors critique the following components of the 40 pages:
 i) Brief review of previous work or state of the field, and particularly how it relates to the project.
 ii) Complete but brief description of the equipment/reactions/equations that form the “heart” of the project.
 iii) Clear demonstration of results, including analysis and stated project outcome.

2. An evaluation of the contribution itself, e.g., the difficulty of the central tasks, and the skills involved in measurement and analysis. Both quality and quantity of contributions do count in the assessment. The student’s role in innovation (as substantiated by the supervisor and queried by the assessors) should also be assessed.

3. Proper citation of published work and acknowledgements, particularly where the thesis project hinges upon a larger research project. Other’s contributions (although they may be reported in the thesis) are NOT assessed/graded.

It is inappropriate for any component of the grade to reflect the resources/lack of resources of the laboratory, as these are not within the year-long control of the student. It is inappropriate for any component of the grade to reflect other people’s contributions, including those of the supervisor. For example, a student is not rewarded for a novel project whose inception was that of the supervisor.

However, it is appropriate to assess/grade the student’s description of other’s contributions, especially how they relate to their contributions.
Final Seminar

The aims of the assessors are to:

1. Quantify how well the Honours student communicates his/her thesis project (i.e., his or her own contributions against a background of contributions) to a general chemistry audience, and

2. Quantify how well the student responds to/answers questions that relate directly to the presentation.

All assessors score each student on a 0-10 scale using whole and half numbers. If assessors cannot discriminate between two seminars to within 0.5 on the 0-10 scale, then the seminars are given the same whole/half number. This is to ensure uniformity in the assessors’ grading scales.

Orals

The idea is to probe to see if the student understands what he/she has done, how his/her contribution relates to the field, and possibly, but not necessarily, if he/she can think “beyond the square”. The aim is to assess whether the student can engage in a scientific discussion.

The content of the oral responses is assessed or graded. Poise, confidence, and bravado may impact an audience in a presentation (as reflected in a Final Seminar grade), but scientific discussion relies on true exchanges and not appearances.

It is NOT appropriate to assess/grade the student’s responses to a questioner’s claim that this or that in the thesis is WRONG (if the student knew it was wrong, they wouldn’t have put it in their thesis). It IS appropriate to question the student about fundamentals, leading them up to the questionable item in the thesis. Then, the assessment should be made on the student’s participation in the discussion that ensues, and not on an incorrect item itself. The oral assessment should not have a component that reflects the incorrect item itself - this corresponds to content of the thesis and should be part of the thesis grade.

All assessors score each student on a 0-10 scale, using whole and half numbers. If assessors cannot discriminate between two seminars to within 0.5 on the 0-10 scale, then the seminars should be given the same whole/half number. This is to ensure uniformity in the assessors’ grading scales.

Because of the ordering on the assessments, a thesis assessor may have questions about the content of the thesis that they wish the student to address. These questions have been posed in the Orals and the student’s response part of the Oral mark. If these questions impact an assessor’s mark on a thesis, they should be discussed confidentially with the thesis assessors, supervisor & observer.
Research School of Chemistry Induction Day for Honours Students

The University is required by Occupational Health and Safety (OHS) regulations to provide formal OHS training to staff and students. This Induction Day is designed for chemists working in a research environment and whilst the topics covered are primarily concerned with OHS issues, the day also includes many useful practical techniques for bench chemists.

PLEASE NOTE: Details for this will be announced in Jan. 2014.
APPENDIX A: College of Physical and Mathematical Sciences Honours Working Rules

1. Concept of the Honours Degree

The award of an honours degree attests to

(a) greater depth and probably greater breadth of knowledge within one field of study*;

(b) development of an independent approach to and ability in research and in scientific communication;

(c) a superior academic ability, as judged by performance in second and third-year units and in the Honours Year.

* e.g. zoology rather than entomology

2. Entry to Honours Year

2.1. To safeguard 1(c), the minimum requirement for admission to an honours course is as follows:

(a) the successful completion of at least 48 units of later-year Science courses relevant to the proposed field of honours study, of which at least 24 units must be for Group C courses;

(b) the attainment of an average of 2 for the 48 units, where HD=4, D=3, CR=2, P=0;

(c) on the recommendation of the Head of Department/School concerned, in the light of availability of resources and appropriate supervision.

2.2. There is no time limit between completion of the pass degree and commencement of the honours year.

2.3. Recommendations of Departments/Schools for admission to the honours program of students who do not meet the requirements of 2.1 must be submitted to the Dean of the College for consideration.

2.4. If a Department/School has entry requirements additional to those set out in 2.1, due publicity of these requirements should be given in the Undergraduate Handbook.

3. Classifying Honours Performance

Appropriate, superior academic ability having been demonstrated before admission to the honours year, the class of honours awarded is based on the performance in the honours year (with the exception of concurrent honours in Forestry - see item 10).
4. Handbook Entries

Departmental entries in the College handbook describing the honours program offered by them should include:

(a) a brief statement of the aims of the main components of the honours program;

(b) information on aspects of the program which provide training for fields other than postgraduate research.

5. Student Information

An information document should be made available by departments to prospective honours students in their third year outlining aspects of the honours programs (copy to Dean). These might include information on entry requirements, admission procedures, the role of the Honours Convener (Chairman of Examiners), student rights, availability of equipment and support, availability of mid-year programs, length of program, details of program components, weightings and the need for students to consult with the department on structure and assessment.

6. Procedure

6.1. In accordance with the Rules of the University, a Chairman of Examiners and at least one other examiner will be appointed by the Head of the Department/School for each calendar year.

6.2. The Head of Department/School will appoint an Honours Convener to be responsible for the co-ordination of the honours program.

6.3. The name of the Honours Convener for the following year must be reported to the College in November each year.

6.4. Students seeking admission to the honours program should be requested to approach, first, the Honours Convener for advice on entry requirements and supervision and, second, any prospective supervisor(s), before submitting an application.

6.5 Students should be advised of their right to approach the Honours Convener where difficulties arise, for instance, supervision.

7. Program Duration

7.1. The precise duration of full-time honours candidature is set by the Department/School concerned and may approximate but not exceed a period of ten months; similar deadlines should be imposed for students commencing honours in second semester. Specified requirements should be strictly observed.
7.2. Extension of time to submit beyond the date of the College of Science Board of Examiners meeting will be subject to the approval of the Dean and should be granted only when there are factors clearly beyond the control of a student.

7.3. Suspension of honours candidature will be subject to the approval of the Dean.

8. Outside Supervision

Thesis supervision may be provided by a person outside the Department/School provided that this supervisor is substantially involved in the honours program of the particular Department/School and is responsible to the Head of the Department/School for the supervision of the student.

9. Part-time Candidature

Part-time candidature is subject to the approval of the Dean on the recommendation of the Department/School concerned; confirmation will be required that the workload and the time allocated to complete the work are comparable to the requirements for full-time students.

10. Forestry

10.1. Both concurrent and final (fifth) year honours are available in the program for the degree of Bachelor of Science (Forestry).

For concurrent honours,

(a) students must have completed all first-year courses; maintained at least a Credit average in Group B and C courses; demonstrated superior achievement (Distinction, High Distinction) in courses relevant to the topic in which they propose to undertake honours; and are in the fourth year of the BSc(Forestry) degree;

(b) the grade of honours awarded is based on performance throughout the second, third and fourth years of the program, equally weighted with the honours thesis.

10.3. For final year Forestry honours, the minimum entry requirement is at least four grades of Distinction and eight grades of Credit in relevant Group B and C courses with an overall minimum average of 65%.

11. Admission of Graduates of other Universities

Graduates of other universities may be accepted for admission to honours candidature provided that the undergraduate program and performance in that program are of a standard comparable to that applying in the relevant Department/School.
12. Combined Honours

Combined honours may be pursued under the following conditions:

(a) enrolment in each combined honours program will depend on:

(1) both Departments accepting the candidate, the proposed program and assessment procedures; and

(2) the student satisfying the College's minimum requirements for admission to honours;

(b) a combined program will be integrated and will be shared approximately equally by the two Departments involved. The combined program will not be awarded for work done predominantly in one department and supplemented by work done in another department;

(c) there should be at least one supervisor for each department, one of whom must be appointed as co-ordinator of the integrated program. The other department must supply a chairman of examiners.

13. Standing Committee

The Standing Committee of the College is charged with the responsibility of making decisions on behalf of College on matters relating to individual honours candidates.
Appendix B: Articles Concerning Seminar Preparation

These can be found in a separate document.