Associate Professor Stephen Moggach

The Effect of Pressure, Guest Uptake and Structural Flexibility on Porous Materials


Stephen A. Moggacha


a School of Molecular Sciences and Centre for Microscopy, Characterisation and Analysis (CMCA), The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, AUSTRALIA


In recent years the development of new methods of storing, trapping or separating light gases, such as CO2, CH4 and CO has become of outmost importance from an environmental and energetic viewpoint. Porous materials such as zeolites and porous organic polymers have long been considered good candidates for this purpose. More recently, metal organic frameworks (MOFs) have attracted further interest with many aspects of their functional and mechanical properties investigated. The porous channels found in MOFs are ideal for the uptake of guests of different shapes and sizes, and with careful design they can show high selectivity for particular species from a mixture. Adsorption properties of MOFs have been thoroughly studied, however obtaining in depth ‘structural’ insight into the adsorption/desorption mechanism is not so common place.

Over the last 6 years, we have been using high-pressure crystallographic techniques to explore the uptake of guest species in the pores of MOFs, and explore their structural stability to pressure. We do this, by taking advantage of the fact that the small molecules that encompass the pressure transmitting fluids used frequently in high-pressure crystallographic studies, can penetrate the pores on increasing pressure. This has revealed unexpected flexibility, explain unusual adsorption phenomena under milder pressures, and increase reactivity in MOFs. Here, we will give an overview of the effect of high-pressure on micro and nanoporous materials, and in-particular, highlight some recent work on molecular nanoporous materials. Unveristy of Western Australia