Connal Group

At the Connal group we make polymers. Polymers and soft matter have a number of applications across a multitude of industries and areas which means we develop new materials for a range of applications.

The group focuses on creating new polymers for advanced applications, these include new polymer catalysts inspired by enzymes, for detergents, therapeutics and nerve agent decontamination.

We also develop new smart polymers for 3D printer inks, enabling printed objects to perform advanced functions. We also have a program to develop new polymer electrolytes for energy storage applications. We work closely with industry partners to develop this enabling polymer chemistry.

Filter by keyword

(50)      Hu, G., Xiao, X., Smith, K., Kentish, S., Stevens, G., Connal, L. A. ‘A carbonic anhydrase inspired temperature responsive polymer based catalyst for accelerating carbon capture’ Chemical Engineering Journal 2018, 332, 556.

(49)      Collins, J., Xiao, X., Connal, L. A. ‘Tunable degradation of PEG-like polymers based on imine and oxime bonds’ J. Polym. Sci.  Part A; Polym. Chem, 2017, 55, 3826-3831.

(48)      Karimi, F., Collins, J., Heath, D. E., Connal, L. A., Dynamic Covalent Hydrogels for Triggered Cell Capture and Release’ Bioconjugate Chemistry, 2017, 28, 2235-2240.

(47)      Nadgorny, M., Gentekos, D. T., Xiao, Z., Singleton, S. P., Fors, B. P., Connal, L. A.

‘A carbonic anhydrase inspired temperature responsive polymer based catalyst for accelerating carbon capture’ Macromol. Rapid Commun. 2017, 38, 1700352.

(46)      Nadgorny, M., Xiao, Z., Connal, L. A. ‘2D and 3D-printing of self-healing gels: design and extrusion of self-rolling objects’ Molecular Systems Design and Engineering, 2017, 2, 283.

(45)      Oschmann, B., Lawrence, J., Schulze, M. W., Ren, J. M., Anastasaki, A., Luo, Y., Nothling, M. D., Pester, C. W., Delaney, K. T., Connal, L. A., McGrath, A. J., Clark, P. G., Bates, C. M., Hawker, C. J. ‘Effects of Tailored Dispersity on the Self-Assembly of Dimethylsiloxane–Methyl Methacrylate Block Co-Oligomers’ ACS Macro Letters, 2017, 6, 668.

(44)      Xiao, Z., Bonnard, T., Shakouri-Motlagh., Wylie, R. A., Collins, J., Heath, D., Hagemeyer, C., Connal, L. A.,  ‘Triggered and Tunable Hydrogen Sulfide Release from Photo-Generated Thiobenzaldehydes’ Chemistry – A European Journal, 2017, 10.1002/chem.201701206.

(43)      Mitchell D. Nothling M. D., Ganesan, A., Condic-Jurkic, K., Pressly, E., Davalos, A., Gotrik, M. R., Xiao, X., Khoshdel, E., Hawker, C. J., O'Mara, M. L., Coote, M.L. Connal, L. A. Simple Design of an Enzyme-Inspired Supported Catalyst Based on a Catalytic Triad’’ Chem, 2017, 2, 732.

(42)      Bennett, C., Collins, J., Xiao, Z., Klinger, D. Connal, L. A. ‘A Scalable and Versatile Synthesis of Oxime-Based Hormone Dimers and Gels for Sustained Release’ Chemistry – An Asian Journal, 2017, 12, 1456.

(41)      Chen, C., Wylie R., Klinger D., Connal L. A. ‘Shape control of soft nanoparticles and their assemblies’ Chem. Mater. 2017, 29, 1918.

(40)      Ng, W., Connal, L. A., Forbes, E., Mohanarangam, K., Franks, G., In situ investigation of aggregate sizes formed using thermo-responsive polymers: Effect of temperature and shear’ Journal of Colloid & Interface Science 2017, 494, 139-152.

(39)      Collins, J., Nadgorny , M., Xiao, Z., Connal, L. A., ‘Doubly Dynamic Self-Healing Materials Based on Oxime Click Chemistry and Boronic Acids’  Macromol. Rapid Commun. 2017, 38, 1600760

(38)      Brisson, E. R. L., Xiao, Z., Franks, G., Connal L. A. ‘Versatile Synthesis of Amino Acid Functional Polymers without Protection Group Chemistry’ Biomacromolecules, 2017, 18, 272–280

(37)      Nadgorny, M., Xiao, Z., Chen, C., Connal, L. A3D-printing of pH-responsive and functional polymers on an affordable desktop printer’ ACS Appl. Mater. Interfaces, 2016, 8, 28946–28954

(36)      Xiao, Z., Chen, C., Brisson, E. R. L., Collins, J., Ng., W. S., Connal, L. A. ‘Spatial Control of Flocculation via Light’ J. Polym. Sci.  Part A; Polym. Chem, 2016, 54, 3407-3410.

(35)      Ng, W., Forbes, E., Franks, G., Connal, L. A., ‘Xanthate-Functional Temperature-Responsive Polymers: Effect on Lower Critical Solution Temperature Behavior and Affinity towards Sulfide Surfaces’ Langmuir, 2016, 32, 7443–7451.

(34)      Ng, W., Forbes, E., Connal, L. A., Franks, G., ‘Xanthate-Functional Temperature-Responsive Polymers as Selective Flocculants and Collectors for Fines Recovery Minerals Engineering’ Minerals Engineering, 2016 accepted 17th of May, doi:10.1016/j.mineng.2016.05.013.

(33)      Collins, J., Xiao, Z., Muellner, M., Connal, L. A., ‘The Emergence of Oxime Click Chemistry and its Utility in Polymer Science’ Polym. Chem, 2016, 7, 3812-3826.

(32)      Lawrence, J., Lee, S., -H., Abdilla, A., Nothling, M. D., Ren, J. M., Knight, A. S., Fleischmann, C., Li, Y., Abrams, A. S., Schmidt, B. V. K. J., Hawker, M. C., Connal, L. A., McGrath, A. J., Clark, P. G., Gutekunst, W. R., Hawker, C. J. ‘A Versatile and Scalable Strategy to Discrete Oligomers’   J. Am. Chem. Soc., 2016, 138, 6306–6310.

(31)      Collins, J., Xiao, Z., Espinosa-Gomez, A., Fors, B P., Connal, L. A. ‘Extremely Rapid and Versatile Synthesis of High Molecular Weight Step Growth Polymers via Oxime Click Chemistry’ Polym. Chem. 2016, 7, 2581-2588.

(30)      Chen, C., Xiao, Z., Connal, L. A. ‘Phase Separated Block Copolymer Particles with Tuneable Morphologies: Striped, Onion, and Patchy Particles’ Aust. J. Chem. 2016, DOI: 10.1071/CH16033.

(29)      Brisson, E. R. L., Xiao, Z., Connal, L. A. ‘Amino Acid Functional Polymers: Biomimetic Polymer Design Enabling Catalysis, Chiral Materials, and Drug Delivery’  Aust. J. Chem. 2016, DOI:10.1071/CH16028.

(28)      Brisson, E. R. L., Xiao, Z., Levin, L., Franks, G., Connal L. A. ‘Facile synthesis of histidine functional poly(N-isopropylacrylamide): zwitterionic and temperature responsive materials’, Polym. Chem. 2016, 7, 1945-1952.

(27)      Xiao, Z., Wylie, R. A. L., Brisson, E. R. L., Connal, L. A. ‘pH-responsive fluorescent hydrogels using a new thioflavin T cross-linker’  J. Polym. Sci.  Part A; Polym. Chem, 2016, 54, 591–595.

(26)      Kempe, K., Wylie, R. A., Dimitriou, M. D., Tran, H., Hoogenboom, R., Schubert, U. S., Hawker, C. J., Campos, L. M., Connal, L. A. ‘Preparation of non-spherical particles from amphiphilic block copolymers’ J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 750–757.

(25)      Xiao, Z., Bennett, C. W. and Connal, L. A. ‘Facile and versatile platform for the preparation of functional polyethylenes via thiol-ene chemistry’ J. Polym. Sci. Part A: Polym. Chem. 2015, 53, 1957–1960.

(24)      Lowe, S., O'Brien-Simpson N. M., Connal, L. A. ‘Antibiofouling polymer interfaces: poly (ethylene glycol) and other promising candidates’ Polym. Chem. 2015, 6, 198-212.

(23)      Klinger, K., Wang, C., Connal, L. A., Audus, D. J., Jang, S. -G., Kraemer, S., Killops, K. L., Fredrickson, G. H., Kramer, E. J., Hawker C. J. ‘A Facile Synthesis of Dynamic, Shape‐Changing Polymer Particles’ Angew. Chem. Int. Ed. 2014, 53, 7018–7022.

(22)      Klinger, D., Robb, M. J.,  Spruell, J .M., Lynd, N. A.,  Hawker, C. J., Connal, L. A. ‘Supramolecular guests in solvent driven block copolymer assembly: from internally structured nanoparticles to micelles’ Polym. Chem. 2013, 4, 5038-5042.

(21)      Liu, Y., Pressly, E., Pierce, R., Connal, L. A., Hawker, C. J. ‘Nanoparticle PET/CT imaging of natriuretic peptide clearance receptor in prostate cancer’  Bioconjugate Chem. 2013, 24, 196-204.

(20)      Connal, L. A., Robb, M. J., Lynd, N. A., See, K. A., Jang, S. G., Hawker, C. J. ‘Mesostructured block copolymer nanoparticles: Versatile templates for hybrid inorganic/organic nanostructures’ Chem. Mater. 2012, 21, 4036-4042.

(19)      Robb, M. J., Connal, L. A., Lee, B. F., Lynd, N. A., Hawker, C. J. ‘Functional block copolymer nanoparticles: toward the next generation of delivery vehicles’ Polym. Chem., 2012, 6, 1618-1628.

(18)      Mertz, D., Ochs, C. J., Zhu, Z. Y., Lee, L., Guntari, S. N., Such, G. K., Goh, T. K., Connal, L. A., Blencowe, A., Qiao, G. G., Caruso, F. ‘ATRP-mediated continuous assembly of polymers for the preparation of nanoscale films’ Chem. Commun., 2011, 47, 12601-12603.

(17)      Goh, T. K.,  Guntari, S. N., Ochs, C. J., Blencowe, A., Mertz, D.,  Connal, L. A., Such, G. K., Qiao, G. G.,  Caruso, F. ‘Nanoengineered Films via Surface‐Confined Continuous Assembly of Polymers’ Small, 2011, 20, 2863–2867.

(16)      Spruell, J., Wolffs, M., Leibfarth, F., Stahl, B., Heo, J., Connal, L. A, Hu, J., Hawker, C. J. ‘Reactive, multifunctional polymer films through thermal cross-linking of orthogonal click groups’ J. Am. Chem. Soc., 2011, 133, 16698-16706

(15)      Binauld, S., Damiron, D., Connal, L. A., Hawker, C. J., Drockenmuller E. ‘Macromol. Rapid Comm. 2011, 32, 147.

(14)      Connal L. A, Franks G. V, Qiao G. G ‘Photochromic, metal-absorbing honeycomb structures’ Langmuir  2010, 13, 10397- 10400.

(13)      Chandrawati, R., Städler, B., Postma, A., Connal, L. A., Chong, S. -W., Zelikin, A. N., Caruso, F. ‘Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsules’ Biomaterials, 2009, 30, 5988-5998.

(12)      Städler, B., Chandrawati, R., Price, A. D., Chong, S. -F., Breheney, K., Postma, A., Connal, L. A., Zelikin, A. N., Caruso, F. ‘A microreactor with thousands of subcompartments: enzyme-loaded liposomes within polymer capsules’  Angew. Chem. Int. Ed. 2009, 48, 4359-4362.

(11)      Connal, L. A., Kinnane, C. R., Zelikin, A. N., Caruso, F. ‘Stabilization and Functionalization of Polymer Multilayers and Capsules via Thiol−Ene Click Chemistry’ Chem. Mater. 2009, 21, 576-578.

(10)      Connal, L. A., Vestberg, R., Hawker, C.  J., Qiao, G. G. ‘Dramatic Morphology Control in the Fabrication of Porous Polymer Films’ Adv. Funct. Mater. 2008, 18, 3706-3714.

(9)        Connal, L. A., Vestberg, R., Hawker, C. J., Qiao, G. G. ‘Fabrication of Reversibly Crosslinkable, 3-Dimensionally Conformal Polymeric Microstructures’ Adv. Funct. Mater. 2008, 18, 3315-3322.

(8)        Connal, L. A., Li, Q., Quinn, J. F., Tjipto, E., Caruso, F., Qiao, G. G. ‘pH-Responsive Poly(acrylic acid) Core Cross-Linked Star Polymers: Morphology Transitions in Solution and Multilayer Thin Films’ Macromol., 2008,  41, 2620-2626.

(7)        Connal, L. A., Vestberg, R., Gurr, P. A., Hawker, C. J., Qiao, G. G. ‘Patterning on nonplanar substrates: flexible honeycomb films from a range of self-assembling star copolymers’ Langmuir, 200824,  556-562.

(6)        Connal, L. A., Vestberg, R., Hawker, C. J., Qiao, G. G. ‘Synthesis of dendron functionalized core cross-linked star polymers’  Macromol. 2007, 40, 7855-7863.

(5)        Craig, I., Aravinthan, V., Baillie, C., Beswick, A., Barnes, G., Bradbury, R., Connal, L A., Coop, P., Fellows, C., Fitzmaurice, L., Foley, J., Hancock, N., Lamb, D., Morrison, P., Misra, R., Mossad, R., Pittaway, P., Prime, E., Rees, S., Schmidt, E., Solomon, D., Symes, T., Turnbull, D, ‘Evaporation, seepage and water quality management in storage dams: a review of research methods’ Environ Health, 2007, 3, 84-97

(4)        Connal, L. A., Qiao, G. G. ‘Honeycomb coated particles: porous doughnuts, golf balls and hollow porous pockets’ Soft Matter, 2007, 3, 837-839.

(3)        Connal, L. A. ‘Flexible honeycomb films’ Aust. J. Chem. 2007, 60, 794-794.

(2)        Connal, L. A., Qiao, G. G. ‘Preparation of Porous Poly (dimethylsiloxane)‐Based Honeycomb Materials with Hierarchal Surface Features and Their Use as Soft‐Lithography Templates’ Adv. Mater., 2006, 18, 3024-3028.

(1)        Connal, L. A., Gurr, P.A., Qiao, G.G., Solomon, D. H. J. ‘From well-defined star-microgels to highly ordered honeycomb films’  Mater. Chem. 2005, 15, 1286-1292.



(4)        ‘Synthetic enzyme mimic based on a histidine scaffold’ Luke Andrew Connal, Craig Jon Hawker, Ezat Khoshdel, Eric Dean Pressly, 2016, WO2016096589

(3)        ‘Synthetic enzyme mimic based on a histidine scaffold’ Luke Andrew Connal, Craig Jon Hawker, Ezat Khoshdel, Eric Dean Pressly, 2016, WO2016096590

(2)        ‘Process for the preparation of a cross-linked multilayer film’ Caruso F. Connal L.A.; Qiao, G. G. Such, G. Blencowe, A. B. Goh, T.K. 2011 12/932959

(1)        Porous Polymeric Materials and Polymer Particles for Preparation Thereof’ Connal, L. A.; Wiltshire, J. T.; Qiao, G. G. PCT Int. Appl.  (2007), 138pp. WO  2007051252.

About the Battery Storage and Grid Integration Program

Established in April 2018 the Battery Storage and Grid Integration Program (BSGIP) undertakes socio-techno-economic research, development and demonstration activities that support the global energy transition and help achieve economy-wide decarbonisation.Work within the program encompasses detailed disciplinary work on components of the global energy system and on how we integrate these components together to support energy transition and decarbonisation. Staff within the Program have broad expertise that includes engineering, chemistry, computer sciences, physics, economics and the social sciences. The Program places a strong focus on translational research which is defined as simultaneously advancing the body of knowledge and advancing the practice in the field.Hosted within The Australian National University by the School of Engineering (within the College of Engineering and Computer Science) and the Research School of Chemistry (within the College of Science), the Program comprises more than 50 staff and students with diverse academic, industry, gender and cultural backgrounds. The Program is funded by the ACT Government through the Renewable Energy Innovation Fund initiative, the Australian National University, and through project funding from various industry partners and grant bodies.Work led through the Research School of Chemistry focuses on materials, battery technologies and characterisation. Researchers are designing, building and characterising new battery storage devices, based on a fundamental understanding of different chemical and material behaviours. They are also exploring opportunities for battery recycling, reuse and failure analysis based on characterisation capabilities. Find out more: Battery Storage and Grid Integration Program – An initiative of the Australian National University (