Potential projects

Please contact academics to discuss alternative projects. They may be able to tailor projects to your particular interests.

Inorganic chemistry

Professor Anthony Hill: Projects are focused on the synthesis of new compounds that display unusual bonding situations. Key areas of current interest are:

(i) The synthesis of bimetallic compounds that are spanned by a linear chain of carbon atoms (‘carbon wires’) that are interrupted by a main group element. If the element is from group 15 (P, As, Sb, Bi) then there is the possibility of coordinating a Lewis acid to the lone pair on the element. Conversely, if the element is from group 13 (B, Al, Ga, In) then an empty orbital is available for coordination of a Lewis base (i.e., Ligand). This therefore offers a means of ‘switching’ the electronic communication between the metal termini, in effect a molecular transistor.

(ii) Trivalent boron typically serves as a Lewis acid to a range of electron pair donors (phosphines, thioethers, amines, ethers, etc.). When a late transition metal (i.e., groups 8-10) has a high d-occupancy (d8, d10) the possibility arises that the metal can act as a Lewis base towards main-group electrophiles, thereby reversing the traditional role of the metal as an electron pair acceptor for ligands. We are currently exploring compounds which have a dative (polar covalent) bond from a transition metal to boron, with a view to applying this unusual bonding situation to the development of catalysts.

Skills acquisition: All projects involve the manipulation of air-reactive materials under anaerobic conditions (vacuum line, dry-box techniques) and their characterisation with a wide range of instrumental techniques including IR, UV-vis, MS and 1 or 2-D NMR spectroscopies in addition to X-ray crystallography.

Dr Annie Colebatch: Catalyst Design: Our research focuses on the design and understanding of organometallic catalysts. This involves synthesis of cooperative, multifunctional ligands and late transition metal complexes, studying the reactivity of such complexes towards catalytically relevant substrates, and their deployment in catalytic reactions, particularly hydrogenation and dehydrogenation reactions for hydrogen fuel storage. We aim to study the mechanisms of catalysis to enable the rational design of improved performance systems. This work will involve synthesis of air-sensitive materials using Schlenk line and glove box techniques, NMR spectroscopy, mass spectrometry and X-ray crystallography. Email annie.colebatch@anu.edu.au for more information on specific projects.

Organic chemistry

Professor Martin Banwell: Synthesis and mechanism: A key focus of our research group is on the total synthesis of biologically active natural products and various analogues. The development of new methodologies that underpin such efforts is another focus and often involves the use of either, (i), strained organic molecules and reactive intermediates or, (ii), microbial oxidation products for such for such purposes. Medicinal chemistry based projects concerned with the development of orally available drugs for treating type-1 diabetes and certain neurological disorders as well as exploring the molecular basis of action of anti-mitotic drugs are being undertaken in collaboration with industry partners and/or overseas institutions. Email: martin.banwell@anu.edu.au for more information on specific projects.

Professor Michelle Coote: We use theory and experiment to study the mechanisms of chemical reactions, and design reagents and catalysts for manipulating them. Current areas of interest include using electro-organic synthesis, developing new carbon-halogen activation methods, controlling the stereochemistry of radical polymerization, and catalysing and controlling chemical reactions with electric fields. We offer projects in theory, experiment or both. Email: michelle.coote@anu.edu.au for more information on specific projects.

A/Professor Mal McLeod: Sports drug testing and medicinal chemistry: The McLeod group employs a wide range of techniques to study drug metabolism. These include chemical and enzymatic synthesis of drugs and their metabolites, methods of in vitro metabolism coupled with analysis by GC-MS-MS or LC-MS-MS, and molecular biology to engineer improved enzymes with anti-doping applications. The group is also active in the are of medicinal chemistry of nicotinic acetylcholine receptors (nAChRs). Here our goal is the development of new drugs to treat neurological disorders. Email malcolm.mcleod@anu.edu.au for more information on specific projects.

Professor Mick Sherburn: Synthesis: my group aims to develop better ways to synthesise and study organic substances. Faster access to organic compounds – and a better understanding of organic structure and reactivity – leads to new and better medicines, smarter materials, and less environmental impact from chemical processes. We devise new domino reaction sequences and apply them in the shortest syntheses of biologically active natural products. We also devise the chemical synthesis of fundamental organic compounds that others have tried and failed to prepare. Overall, our goal is to advance the science of synthesis. For more information, see http://sherburngroup.org. For information on specific projects, contact Prof Mick Sherburn, michael.sherburn@anu.edu.au.

Dr Lee Alissandratos and Professor Chris Easton: Through novel approaches at the interface of chemistry and synthetic biology we seek to create real-world solutions to some of the most pressing issues: chemical & energy sustainability, global health and biosecurity. Available projects fall into two broad areas: (i) sustainable conversion of renewable feedstock (lignocellulosics) and pollutants (carbon dioxide, ammonia) into fuels and chemicals through new multi-enzymatic routes, and (ii) the production of biological diagnostic devices for the detection of human, animal and plant pathogens, suitable for use in low-tech settings and in the developing world. All students will have the opportunity to receive training in synthesis, molecular biology, enzymology, microbiology as well as chemical and biochemical analytical techniques. Email: apostolos.alissandratos@anu.edu.au for more information on specific projects.

Dr Tristan Reekie:  Our research uses organic synthesis techniques to create molecules for application in medicinal chemistry, materials and plant sciences. As well as the application-based focus of our research, we also develop new chemical tools to access our targets in a quick, simple and effective way. This summer we are looking for researchers with interest in organic synthesis to work in developing new materials with novel optical properties. For more information, see https://reekiegroup.com/ or Email: tristan.reekie@anu.edu.au for more information on specific projects.

Biological chemistry

Professor Thomas Huber: Projects are available in computational protein design and protein structure determination from sparse experimental data. We use computer algorithm to simulate and understand the principles of biomolecular structures. Combining this principle knowledge with easy to perform experiments we then computationally determine the structure of proteins, or design completely new proteins with novel functions. Email t.huber@anu.edu.au for more information on specific projects.

A/Professor Colin Jackson: We  are interested in protein engineering, design and evolution. There are a number of research programs in the lab that you could be part of: (1) understanding the molecular basis of evolution through ancestral protein reconstruction, where we computationally predict the sequence of ancient proteins, to understand how mutations have led to the multitude of functions we see today; (2) understanding the role of protein dynamics to function, especially in enzymes, and how this can be changed through evolution/engineering; (3) the design and engineering of a new family of oxidoreductases for biocatalysts and use in the production of fine chemicals and pharmaceuticals; (4) the design and construction of new biosensors for neurotransmitters; (5) understanding the molecular basis of insecticide resistance and designing new pesticides; (6) computational design of new inhibitors for a drug target involved in cancer. Email: colin.jackson@anu.edu.au for more information on specific projects.

Professor Gottfried Otting: NMR spectroscopy of proteins. We develop new methods to accelerate pharmaceutical drug design (rather than trying to compete with pharmaceutical industries regarding specific protein targets). Projects include the design of specific protein labels by chemical and biochemical approaches for NMR and EPR applications. Other projects are designed to contribute to the training of the next generation of NMR spectroscopists in Australia. The protein chemistry project includes molecular biology, cell-free protein synthesis and subsequent analysis by straightforward NMR or EPR methods. The NMR project is for you, if you have some interest in physics and some experience with programming and/or Linux, and enjoy extracting detailed information from NMR spectra. Email: gottfried.otting@anu.edu.au for more information on specific projects.

Professor John Carver: Our research interests are in peptide and protein structure, function and interactions. Of late, the group has been concentrating on molecular chaperone proteins and their mechanism of stabilizing other proteins, particularly those involved in diseases of protein aggregation, e.g. Alzheimer’s and Parkinson’s diseases and cataract. Another area of interest involves examination of the oligomeric structure of milk proteins, particularly the caseins, a topic of fundamental importance to the fields of dairy science and nutrition. We utilise a diversity of spectroscopic, biophysical and protein chemical techniques for our research, with NMR spectroscopy being at the forefront. Email: john.carver@anu.edu.au for more information on specific projects.

Dr Christoph Nitsche: We create and study selective interactions between proteins and small synthetic molecules. Our research projects are interdisciplinary, involving a broad spectrum of techniques ranging from organic chemistry to structural biology. Currently, there are various exciting research projects that you could be part of:

(1) Development of antiviral agents: Our research targets viral proteases as the Achilles heel of viral replication to combat neglected tropical diseases like dengue fever. You can help to design and test selective inhibitors that serve as lead compounds for drug discovery campaigns.

(2) New technologies for drug discovery: The generation of new drug candidates requires the identification and optimisation of compounds that bind specifically to drug targets. You can help to develop novel screening methods that simultaneously report the compound binding event, site and orientation on the target.

(3) Bioorthogonal chemistry: Chemical ligation reactions that do not interfere with biological systems are essential to modify biomolecules. You can help to introduce new unnatural amino acids into peptides and proteins that allow for orthogonal bioconjugation. Email christoph.nitsche@anu.edu.au for more information on specific projects.

Material science

Professor Yun Liu: "Wet chemical synthesis of metal oxide composites" - This project aims to synthesize  crystalline nano particles for further fabrication of a new composite  that gives an excellent dielectric property for use in electronic devices. The student will  be trained in the field of materials chemistry, including wet chemical synthesis approach, structural analysis, microstructural characterisation and physical property measurement, and thus gains the knowledge and skills for further study as a honours student or  PhD student in this field.  A background in Materials Chemistry is essential. Additional background in Applied Physics and/or Materials Science as well as Applied Mathematics is preferred. Email: yun.liu@anu.edu.au for more information on this project.